Effect of Meniscus Damping Ratio on Drop-on-Demand Electrohydrodynamic Jetting

نویسندگان

  • Samuel Haedong Kim
  • Heuiseok Kang
  • Kyungtae Kang
  • Sang Ho Lee
  • Kwan Hyun Cho
  • Jun Young Hwang
چکیده

Drop-on-demand (DOD) electrohydrodynamic (EHD) jet printing uses a nozzle and pulsated electric fields to eject small ink droplets of functional material to the appointed spot of a substrate at the appointed time, which offers solutions of high resolution patterning for fabrication of printed electronics, bioengineering, and display. Because the EHD jet connects fine drops to yield a fine pattern, it is essential to realize high throughput by generating drops quickly and reliably. In this study, the characteristics of jetting frequency were experimentally investigated as a function of nozzle dimensions by measuring response of jetting frequency to pulsating frequency which is varying from 1 Hz to 2000 Hz. The results showed that, even when the nozzle diameter is the same, the other dimensions of the nozzle significantly change the response of jetting to high pulsating frequency. Using a linear damping model describing hydrodynamic motion of ink inside the nozzle, the different behavior of the jetting frequency was explained via the different damping ratio of the oscillating ink: contrary to an underdamped system, an overdamped system supports a jetting frequency higher than the natural frequency.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Performance Improvement of a Drop-on-Demand Inkjet Printhead using an Optimization-Based Feedforward Control Method

The printing quality delivered by a Drop-on-Demand (DoD) inkjet printhead is limited due to the residual oscillations in the ink channel. The maximal jetting frequency of a DoD inkjet printhead can be increased by quickly damping the residual oscillations and by bringing in this way the ink channel to rest after jetting the ink drop. This paper proposes an optimization-based method to design th...

متن کامل

A Review on Electrohydrodynamic-inkjet Printing Technology

Electrohydrodynamic (EHD)-inkjet printing is a novel high resolution inkjet printing technology with the advantages of being a maskless, non-contact, direct-write and additive process. Its printing resolution exceeds by about two orders of magnitude in comparison to the conventional inkjet printing systems. It is used in the field of micro/nano manufacturing for patterning of large class of mat...

متن کامل

Manipulating Drop Formation in Piezo Acoustic Inkjet

Inkjet developments move towards higher productivity and quality, requiring adjustable small droplet sizes fired at high repetition rates. Normally, maximum jetting efficiency is achieved by tuning the slopes of the driving waveform to the travel times of acoustic waves inside the channel. Important parameters are channel length, compliance of channel cross-section (through its impact on the ef...

متن کامل

Electrohydrodynamic jetting of mouse neuronal cells.

CAD (Cath.a-differentiated) cells, a mouse neuronal cell line, were subjected to electrohydrodynamic jetting at a field strength of 0.47-0.67 kV/mm, corresponding to an applied voltage of 7-10 kV. After jetting, the cells appeared normal and continued to divide at rates similar to those shown by control samples. Jetted cells, when placed in serum-free medium, underwent differentiation that was ...

متن کامل

Damping behavior of bent fiber NSOM probes in water

The damping behavior of bent fiber near-field scanning optical microscopy !NSOM" probes operating in tapping mode oscillation is investigated in air and water. We show that the significant drop in probe quality factor Q, which occurs at the air-water interface, is due to meniscus damping. As the probe is immersed in water viscous damping adds to the meniscus damping. Damping effects which lead ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2018